RSA certificates are currently the standard for certificates however there are also ECC certificates which is growing in popularity. This is mainly due to ECC keys are smaller in size, while providing a security equivalent to that of RSA – reducing the resources needed and providing better performance for media applications, VPN connections and many other bandwidth applications.

You can check the ECC curves at via the following command:

**root@mysuperweb:/# openssl ecparam -list_curves**
secp112r1 : SECG/WTLS curve over a 112 bit prime field
secp112r2 : SECG curve over a 112 bit prime field
secp128r1 : SECG curve over a 128 bit prime field
secp128r2 : SECG curve over a 128 bit prime field
secp160k1 : SECG curve over a 160 bit prime field
secp160r1 : SECG curve over a 160 bit prime field
secp160r2 : SECG/WTLS curve over a 160 bit prime field
secp192k1 : SECG curve over a 192 bit prime field
secp224k1 : SECG curve over a 224 bit prime field
secp224r1 : NIST/SECG curve over a 224 bit prime field
secp256k1 : SECG curve over a 256 bit prime field
secp384r1 : NIST/SECG curve over a 384 bit prime field
secp521r1 : NIST/SECG curve over a 521 bit prime field
prime192v1: NIST/X9.62/SECG curve over a 192 bit prime field
prime192v2: X9.62 curve over a 192 bit prime field
prime192v3: X9.62 curve over a 192 bit prime field
prime239v1: X9.62 curve over a 239 bit prime field
prime239v2: X9.62 curve over a 239 bit prime field
prime239v3: X9.62 curve over a 239 bit prime field
**prime256v1: X9.62/SECG curve over a 256 bit prime field**
sect113r1 : SECG curve over a 113 bit binary field
sect113r2 : SECG curve over a 113 bit binary field
sect131r1 : SECG/WTLS curve over a 131 bit binary field
sect131r2 : SECG curve over a 131 bit binary field
sect163k1 : NIST/SECG/WTLS curve over a 163 bit binary field
sect163r1 : SECG curve over a 163 bit binary field
sect163r2 : NIST/SECG curve over a 163 bit binary field
sect193r1 : SECG curve over a 193 bit binary field
sect193r2 : SECG curve over a 193 bit binary field
sect233k1 : NIST/SECG/WTLS curve over a 233 bit binary field
sect233r1 : NIST/SECG/WTLS curve over a 233 bit binary field
sect239k1 : SECG curve over a 239 bit binary field
sect283k1 : NIST/SECG curve over a 283 bit binary field
sect283r1 : NIST/SECG curve over a 283 bit binary field
sect409k1 : NIST/SECG curve over a 409 bit binary field
sect409r1 : NIST/SECG curve over a 409 bit binary field
sect571k1 : NIST/SECG curve over a 571 bit binary field
sect571r1 : NIST/SECG curve over a 571 bit binary field
c2pnb163v1: X9.62 curve over a 163 bit binary field
c2pnb163v2: X9.62 curve over a 163 bit binary field
c2pnb163v3: X9.62 curve over a 163 bit binary field
c2pnb176v1: X9.62 curve over a 176 bit binary field
c2tnb191v1: X9.62 curve over a 191 bit binary field
c2tnb191v2: X9.62 curve over a 191 bit binary field
c2tnb191v3: X9.62 curve over a 191 bit binary field
c2pnb208w1: X9.62 curve over a 208 bit binary field
c2tnb239v1: X9.62 curve over a 239 bit binary field
c2tnb239v2: X9.62 curve over a 239 bit binary field
c2tnb239v3: X9.62 curve over a 239 bit binary field
c2pnb272w1: X9.62 curve over a 272 bit binary field
c2pnb304w1: X9.62 curve over a 304 bit binary field
c2tnb359v1: X9.62 curve over a 359 bit binary field
c2pnb368w1: X9.62 curve over a 368 bit binary field
c2tnb431r1: X9.62 curve over a 431 bit binary field
wap-wsg-idm-ecid-wtls1: WTLS curve over a 113 bit binary field
wap-wsg-idm-ecid-wtls3: NIST/SECG/WTLS curve over a 163 bit binary field
wap-wsg-idm-ecid-wtls4: SECG curve over a 113 bit binary field
wap-wsg-idm-ecid-wtls5: X9.62 curve over a 163 bit binary field
wap-wsg-idm-ecid-wtls6: SECG/WTLS curve over a 112 bit prime field
wap-wsg-idm-ecid-wtls7: SECG/WTLS curve over a 160 bit prime field
wap-wsg-idm-ecid-wtls8: WTLS curve over a 112 bit prime field
wap-wsg-idm-ecid-wtls9: WTLS curve over a 160 bit prime field
wap-wsg-idm-ecid-wtls10: NIST/SECG/WTLS curve over a 233 bit binary field
wap-wsg-idm-ecid-wtls11: NIST/SECG/WTLS curve over a 233 bit binary field
wap-wsg-idm-ecid-wtls12: WTLS curve over a 224 bit prime field
Oakley-EC2N-3:
IPSec/IKE/Oakley curve #3 over a 155 bit binary field.
Not suitable for ECDSA.
Questionable extension field!
Oakley-EC2N-4:
IPSec/IKE/Oakley curve #4 over a 185 bit binary field.
Not suitable for ECDSA.
Questionable extension field!
brainpoolP160r1: RFC 5639 curve over a 160 bit prime field
brainpoolP160t1: RFC 5639 curve over a 160 bit prime field
brainpoolP192r1: RFC 5639 curve over a 192 bit prime field
brainpoolP192t1: RFC 5639 curve over a 192 bit prime field
brainpoolP224r1: RFC 5639 curve over a 224 bit prime field
brainpoolP224t1: RFC 5639 curve over a 224 bit prime field
brainpoolP256r1: RFC 5639 curve over a 256 bit prime field
brainpoolP256t1: RFC 5639 curve over a 256 bit prime field
brainpoolP320r1: RFC 5639 curve over a 320 bit prime field
brainpoolP320t1: RFC 5639 curve over a 320 bit prime field
brainpoolP384r1: RFC 5639 curve over a 384 bit prime field
brainpoolP384t1: RFC 5639 curve over a 384 bit prime field
brainpoolP512r1: RFC 5639 curve over a 512 bit prime field
brainpoolP512t1: RFC 5639 curve over a 512 bit prime field

The first step to create our certificate is to define our private key which we will keep securely as this key is private:

**openssl ecparam -out mysuperweb.key -name prime256v1 -genkey**
This will give us an private key in a file called **mysuperweb.key**.
-----BEGIN EC PARAMETERS-----
BggqhkjOPQMBBw==
-----END EC PARAMETERS-----
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIEzQZVOlJ447PhA7fIX0jYQLmSQCIyKgewvGQFD3yWRioAoGCCqGSM49
AwEHoUQDQgAE34BxF0NIsfBvKAZP+vH33Mlv4JxSSqPpxn4LO1f2YuKiwMqwC5TB
yeZSzsj1HwtnOxoXqRBnBI64NA18Izq9bw==
-----END EC PRIVATE KEY-----

The next step is to create our CSR for our certificate to be signed. We will base this on our private key:

**openssl req -new -key mysuperweb.key -out mysuperweb.csr**
This will create the certificate signing request which you can submit to your certificate authority for the certificate to be signed.

If we wish, we can look to self-sign our ECC certificate ourselves without the certificate authority, the certificate wonâ€™t be trusted but the protection of the ECC certificate will still exist.

**openssl req -x509 -sha256 -days 365 -key mysuperweb.key -in mysuperweb.csr -out mysuperweb.crt**
The output will be an fill called mysuperweb.crt which will be the certificate, it will be an match for the key file of mysuperweb.key.